Graduate School of Medicine (Doctoral Course)

Admission Requirement for International Students

October 2019 Admission
April 2020 Admission
Contents

Admission policy for Hamamatsu University School of Medicine Graduate School of Medicine (Doctoral Course)
1 Number of Students to be Admitted
2 Eligibility for Application
3 Important Notes before You Apply
4 Individual Review of Admission Eligibility
5 Application Procedures
6 Selection Method
7 Announcement of Results
8 Enrollment Procedures
9 Payment
10 Privacy Policy
11 Scholarship and Miscellaneous Benefits

Graduate School of Medicine (Doctoral Course) Overview
1 Objectives
2 Educational Aims
3 Structure
4 Overview of Research Fields
 (1) Advanced Photo Medicine
 (2) Integrated Functional Medicine
 (3) Frontier Medicine
 (4) Infectious Disease Control & Preventive Medicine
5 Course Registration
6 Major Research Areas
7 Application Fee Payment Instructions
Hamamatsu University School of Medicine Graduate School of Medicine (Doctoral Course)
Admission Policy

In pursuit of our objective of developing creative medical researchers with superior research abilities and clinicians with a high level of research ability who can put research findings to practical use in the field, we seek individuals who fit the following description:

● Description of Desired Student Type
1. Individuals that aim to become superior researchers and who have achieved a high level of specialist knowledge and skill in medical science and treatment and/or aim to become clinicians who can put research findings to practical use in the field.
2. Individuals that aim to develop their ability to independently conduct creative research and continue their investigations over the course of their lives.
3. Individuals with a high sense of ethics and humanity, who have a desire to take a leading role in the field of medicine.
4. Individuals with a desire to develop an international perspective, together with a rich intelligence and refinement.

● Basic Selection Policy
In order to select the desired types of student as outlined above, selection will be conducted in line with expected periods of enrollment through examinations for enrollment in April and examinations for international students to be held in October.

Examinations take into account both the academic ability and quality of the applicants and consist of written examinations in English and specialization-relevant English, an oral examination in the desired field of specialization, as well as a review of applicant results transcripts and an application essay.

1 Number of Applicants to be Admitted

<table>
<thead>
<tr>
<th>Course</th>
<th>October 2019 Admission</th>
<th>April 2020 Admission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specialization in Medicine</td>
<td>limited</td>
<td>limited</td>
</tr>
</tbody>
</table>

2 Eligibility for Application
(1) Individuals that have graduated from university courses in medicine or dentistry, or six-year courses in veterinary medicine or pharmacology, or individuals that are scheduled to graduate from such a course by September 2019 (for applicants intending to enroll in October 2019) or March 2020 (for applicants intending to enroll in April 2020).
(2) Individuals outside of Japan that have completed eighteen (18) years of education (where the final courses undertaken were in medicine, dentistry, pharmacology, or veterinary medicine) or individuals that are scheduled to complete such a course of education by September 2019 (for applicants intending to enroll in October 2019) or March 2020 (for applicants intending to enroll in April 2019).
(3) Individuals that have completed, within Japan, eighteen (18) years of correspondence education offered by a school in a country outside of Japan (where the final courses undertaken were in medicine, dentistry, pharmacology, or veterinary medicine) or individuals that are scheduled to complete such a course of education by September 2019 (for applicants intending to enroll in October 2019) or March 2020 (for applicants intending to enroll in April 2020).
(4) Individuals that have, within Japan, completed a course at a university outside of Japan (limited to cases where the individual has completed eighteen (18) years for education in the applicable non-Japanese country), which is defined as an educational facility under the education system of that country, and have completed other courses as defined by the Minister of Education, Culture, Sports, Science and Technology.
Individuals that have completed a master’s course or individuals that are eligible to be awarded a master’s degree who have also studied for two or more years in a doctoral course that does not have a two-year first period / three-year second period structure, have completed thirty (30) or more units, and have undergone the necessary research supervision (including individuals whose situation falls under Article 6(1) of the degree regulations (1953 Public Notice of the Ministry of Education no. 9), which was in place before the ministerial ordinance that partially amended the degree regulations (1970 Public Notice of the Ministry of Education no. 29) and are deemed to possess at least the equivalent academic ability as someone who has graduated from a graduate school or non-degree course for graduates at a university that offers courses in medicine, dentistry, pharmacology, or veterinary medicine.

Individuals who, after graduating from a university (excluding courses in medicine, dentistry, pharmacology, and veterinary medicine) or after completing sixteen (16) years of education in a country outside of Japan, have engaged in research at a university, research facility, or similar institution for two years or more and, as a result of such research have, in the context of graduate school courses or non-degree courses for graduates, been deemed to possess equivalent or higher academic ability to individuals who have graduated from university courses in medicine, dentistry, pharmacology, or veterinary medicine.

Individuals who have attended a university (limited to courses in medicine, dentistry, pharmacology, or veterinary medicine) for four years or more and that this graduate school deems that superior results have been achieved in certain subjects.

Individuals who have completed sixteen (16) years of education in a country other than Japan (limited to courses in medicine, dentistry, pharmacology, or veterinary medicine) or individuals that have completed, within Japan, sixteen (16) years of correspondence education offered by a school in a country outside of Japan (limited to courses in medicine, dentistry, pharmacology, or veterinary medicine) and have superior results in specific units as defined by this graduate school.

Individuals who, through an individual examination of admission qualifications, have been deemed by this graduate school to have equivalent or higher academic ability than a university graduate and are of at least twenty-four years of age on September 30, 2019 for October 2019 enrollments and March 31, 2020 for April 2020 enrollments.

3 Important Notes before You Apply
 Please refer to the list/table of research laboratories (research groups), research areas, research projects and faculty members on the "Major Research Areas" (Page 11) and select your preferred laboratory (research group) in the Program you are applying for.

 The applicant must make a pre-application inquiry regarding research projects to research laboratory/ies to which they wish to belong in order to receive supervision for their doctoral thesis, before submitting application documents.

 If applicants decide to apply to the University based on the information gained through this pre-application inquiry, they must submit all application documents to the appropriate address as specified hereinafter in "5(3) Address for submitting application documents and references" (Page 4) by the prescribed deadline.

 (Please note: even if you have already submitted documents to your preferred laboratory/advisor in the course of your pre-application inquiry, those documents may not be deemed to be the formal application documents, and thus may not be accepted as your application.)

4 Individual Review of Admission Eligibility
 Since Individuals are required an individual review of admission eligibility before applying. It is necessary to submit the required documents by deadline.

(1) Submission Deadline
 April 26, 2019 (Friday) (postmarked)
(2) Documents for Submission

<table>
<thead>
<tr>
<th>Document</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Application form for review of application eligibility.</td>
<td>University specified format.</td>
</tr>
<tr>
<td>2 Results Transcript</td>
<td>Please submit documents that have been created and placed in a sealed envelope by the authorities at your university (undergraduate school). Applicants who have completed (or are scheduled to complete) a master's level course should submit a document prepared by the head of the relevant graduate school and placed in a sealed envelope.</td>
</tr>
<tr>
<td>3 Graduation certificate (including prospective graduation/completion)</td>
<td>Please submit the document prepared by the authorities of your university (undergraduate school). (Applicants who have terminated graduate level studies without completion should also submit proof of withdrawal). Applicants who have completed (or are scheduled to complete) a master's level course should submit a document prepared by the head of the relevant graduate school.</td>
</tr>
<tr>
<td>4 Study career Certificate</td>
<td>University specified format. * For applicants applying under eligibility criterion (6) and (9)</td>
</tr>
</tbody>
</table>

(3) Address for Submission

“5(3) Address for submitting application documents and references” (Page 4)

i Please mail by air mail filings.

ii Please contact by e-mail to "5(3) Address for submitting application documents and references " before shipment.

5 Application Procedures

(1) Acceptance Period for Application Documents
Application documents must postmark between **May 20 (Monday) and May 29 (Wednesday), 2019.**

NOTE:

1 Please contact your prospective supervisor (refer to Page 12 “Major Research Areas”) in advance and discuss your research plans with them before making your application.

2 Please contact by e-mail to "5(3) Address for submitting application documents and references " before shipment.

3 There is no need to submit the documents submitted during “4 Individual Review of Admission Eligibility” again.

4 Those that arrived after the filing deadline cannot be accepted.

(2) Application Documents

<table>
<thead>
<tr>
<th>Document</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Application Form</td>
<td>University specified format.</td>
</tr>
<tr>
<td>2 Photo</td>
<td>Prepare a photograph (size: 40 mm height x 30 mm width)taken within 3 months of the application, showing your upper body from the front without a hat.</td>
</tr>
</tbody>
</table>
3 Health Certificate
University specified format.
Please submit those consulted within 3 months prior to the filing has been created.

4 Research Plan
University specified format.
Must be written in English, and should not exceed 1,000 words.

5 List of Publications or Document Showing Other Strength.
Submit a list of publications along with up to three reprints/offprints of your major publications, if available.
Excellent academic records: and/or Excellent achievements in a special project in an academic fields.

6 Letter of Reference.
University specified format.
Must be written by your current or former academic supervisor or a professor who knows you well. It is also possible to submitted directly to address for submitting application documents by recommender.

7 Examination Fee
The fee is ¥30,000
Please refer to Page 17" Application Fee Payment Instructions (Payment from Abroad)".
Please enclose the certificate kinds concerned with examination fee payment (It’s possible to copy.) with an application documents.

8 Copy of Residence Card (or similar)
Submit one of the following:
• Copy of residence card or passport.
Family register from your home country, or official document that corresponds to such.

9 Scholarship Application Form
University specified format.
Submit it if you wish to scholarship.

NOTE:
1 Incomplete applications may not be processed.
2 Application documents etc will not be returned.

(3) Address for submitting application documents and references
Hamamatsu University School of Medicine, Admissions Division
Address : 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan
TEL: +81-53-435-2205
E-mail: nyushi@hama-med.ac.jp

6 Selection Method
The selection process for successful applicants consists of a document screening and an interview(as a rule, the interview will be conducted through Internet, for example with Skype.). The interview examination will be scheduled between June 21(Friday) and June 27(Thursday), 2019, and each applicant will be notified via email.
Applicants are required to secure high-speed internet access at the time of the interview examination. Please describe the account of Skype, etc. to the "Application Form".

7 Announcement of Results
Admission results will be sent by E-mail to the address indicated on your Application Form after July 19, 2019(Friday). Unsuccessful applicants will also be informed at this time.

8 Enrollment Procedures
(1) For October 2019 Admission
Successful applicants are to complete enrollment procedures according to the following steps.
Please note that the documents required for enrollment will be sent to all successful applicants.
1 Enrollment documents must be delivered to the university between July 22,(Monday) and July 30(Tuesday), 2019.
ii The return of submitted documents or refund of enrollment fees will not be permitted under any circumstances after completion of enrollment procedures.
iii Completed enrollments will be canceled in the event that the student is unable to graduate or complete their scheduled course of study by the required date.

(2) For April 2020 Admission
The documents required for enrollment will be mailed to successful applicants in the second half of November 2019.

9 Payment
(1) Amount

<table>
<thead>
<tr>
<th>Enrollment Fee</th>
<th>¥282,000 (based on 2018 figures)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuition Fees</td>
<td>First Semester ¥267,900 (based on 2018 figures)</td>
</tr>
<tr>
<td></td>
<td>(Full Year) ¥535,800 (based on 2018 figures)</td>
</tr>
</tbody>
</table>

Tuition fees to be paid after completion of enrollment.
In the event of revision of payment, post-revision amounts will apply.

(2) Exemptions from Payment

i Enrollment Fee Exemptions
Upon application, enrollment fee exemptions may be granted in any of the following cases.
(a) Where it is deemed that payment is problematic due to economic hardship and the student has a superior academic record (half of the enrollment fee will be waived).
(b) Where the person who is, in the main part, responsible for the payment of educational costs passes away within one year prior to enrollment.
(c) Where the applicant, or the person responsible for payment of educational costs, is the victim of a disaster.
(d) Where the president of the university deems that an event has occurred that is similar to (b) or (c), above.

ii Deferment of Payment of Enrollment Fee
Upon application, permission to defer payment of enrollment fee may be granted in any of the following cases.
(a) Where it is deemed that payment of the enrollment fee by the deadline is problematic due to economic hardship, and the student has a superior academic record.
(b) Where the person who is, in the main part, responsible for the payment of educational costs passes away within one year prior to enrollment and it is deemed that payment of the enrollment fee by the deadline is problematic.
(c) Where the applicant, or the person responsible for payment of educational costs is the victim of a disaster and it is deemed that payment of the enrollment fee by the deadline is problematic.
(d) In other circumstances where it is deemed that payment of the enrollment fee must be deferred.

iii Exemption from Payment of Tuition Fees
Where it is deemed that payment is problematic due to economic hardship and the student has a superior academic record, all or half of the tuition fees may be waived after passing a screening process.

10 Privacy Policy
All personal information gathered during application submission, as well as all examination results, will be used for the sole purpose of applicant selection and reviewing of the selection procedures. Further, all personal information collected by this institution will be managed appropriately and in line with all relevant ordinances and other regulations.
11 Scholarship and Miscellaneous Benefits

1) Scholarship benefits of ¥100,000/per month
 (excellent students within each year 10 people, a maximum of four years in the year of evaluation)

2) Tuition exemption
 (You need to apply for tuition exemption every year.)

3) Dormitory
 International students are eligible for the residence while in graduate school.
Graduate School of Medical Research (Doctoral Course) Overview

1 Objectives
The Graduate School of Medicine (Doctoral Course) adopts as its objective the cultivation of both researchers who can undertake basic medical research as well as clinical researchers, both of whom can exhibit leadership on the international stage. In other words, through a broad base of courses in specialist fields, centered around the field of advanced optical medicine, we equip students who aim to become basic researchers with high-level specialist knowledge and skills, and cultivate in them the ability to conduct creative and cutting-edge research. Further, we aim to equip students who wish to become clinical researchers with a research mindset to propel clinical research to new levels, and the practical skills desired in real life clinical situations.

2 Educational Aims
1. Cultivate ethical honest human qualities as a researcher.
2. Develop an international perspective, and a rich and refined intellect.
3. Develop problem discovery abilities.
4. Develop problem solving abilities based on a high level of specialist knowledge and skills in the fields of medical science and treatment.
5. Develop the ability to produce academic publications.
6. Cultivate a lifelong stance toward independent academic inquiry.

3 Structure
(1) Graduate Course, Course, Specialization, and Length of Course
i This graduate course is defined as a doctoral course in the Graduate School of Medicine.
ii The specialization is defined as medicine.
iii The standard length of the doctoral course is four (4) years.

4 Overview of Research Fields
(1) Advanced Photo Medicine
i Overview of Research Field
Light interacts with cells and tissues, allowing us access to a range of information. Accordingly, optical research methods are extremely diverse and are valid in a wide range of areas of medicine. In this field of research, measurement and imaging methods that use light are utilized to their fullest extent, pressing medical challenges are addressed through the operation of light on organisms, and the development of fundamental medical science is embarked upon. At the same time, research that can be of practical use in diagnosis, treatment, and prevention in clinical situations is conducted.

ii Topics
(a) Photopharmacology
Development of probes and equipment for treatment and diagnosis that utilize optical technology, in particular the analysis of internal conditions through diagnostic methods that utilize high energy optics, such as X rays and gamma rays. Specifically, this includes activities that utilize radioactive isotopes for the following: imaging of the biological characteristics of cancer and development of methods for cancer diagnosis; imaging of nervous system activity and molecular movement using optical systems (e.g., PET); analysis of genome distribution and protein expression within organisms using optical systems; quantitative analysis of organism function using radioactive probes; development of new MRI contrast agents; development of new imaging methods that utilize high energy optics; research into drug discovery and pharmacokinetic efficacy utilizing optical systems; analysis of the onset and recovery processes of cerebral infarctions using optical systems; and utilization of optical information for the optimization of pharmacotherapy. Additionally, research into the efficacy and safety of medicines through the creation of new disease models that utilize optics is also being conducted.
(b) Phototherapy Environments

Research into the effect of light on organisms and the application of the results of such analysis to treatment methods. Specifically, this includes analysis of ultraviolet ray induced DNA damage and the relationship between gene expression systems in hereditary optic hyperesthesia, light induced skin aging, light induced immunoreaction, research into the prevention of skin cancer caused by ultraviolet rays, use of optics in the development of instant diagnosis (minimally invasive) methods for oral diseases, research for the adaptive expansion of PDT (photochemotherapy) in advanced cancers, development of new PDT methods, and research into clinical applications, research into macular degeneration and retinal photolesions, research into the eye, which is a light receptor, genetic analysis of eye diseases, and new treatment methods that utilize light.

(c) Optical Functioning Imaging

Research into circulatory dynamics and circulatory disorders of the heart, blood, lymph, and immune system, utilizing optical methods. Specifically, this includes imaging analysis of dynamic changes in blood coagulation factors, as well as thrombogenesis and lysis, analysis of intracellular signal transmission mechanisms, using fluorometric methods, imaging analysis of the intracellular signaling molecules of the myocardial cells and vascular endothelial cells, research utilizing fluorescence hybridization genetic analysis, into the mechanisms through which cancer develops in leukemia and malignant lymphoma, analysis of intracellular information transmission systems in autoimmune diseases using fluorometric methods, blood vessel modeling and imaging analysis of hemodynamics, and the utilization of optics for development of methods for the continuous measurement of all substances in the blood.

With a focus on imaging methods for nerve cells and higher-order neural mechanisms, as well as fluorescent molecule labeling through genetic engineering, research projects that combine methods from molecular biology and electrophysiology are being conducted. Specifically, this includes analysis of neural stem cell activity and cerebral disorders, analysis of the contagion dynamics of neurotropic viruses, analysis of protein molecule kinetics and signal transmission mechanisms of nerve cells, analysis of nerve cell death mechanisms and imaging analysis regarding neuroprotection, analysis through imaging of higher-order nerve adjustment mechanism related cell activity, research into development and plasticity control of neural circuit functioning through active Cl-homeostasis adjustment, research into cerebral function development disorders and cerebral nerve diseases caused by failure of Cl-homeostasis regulatory functions, analysis of the role of inhibitory neurotransmission in the formation of cerebral cortex neural circuits, functional neuroimaging using PET, and elucidation of the state of brain diseases using PET.

Research using mass spectrometric microscopes is also being conducted. This includes imaging of metabolomes and proteomes in cancers, blood vessels, the brain, fats, and internal organs through the MALDI method, that is, through the matrix assisted laser desorption/ionization method.

(2) Integrated Functional Medicine

i) Overview of Research Field

The coordinated activity of organisms requires movement that integrates higher-order regulatory functions, such as the nervous system and sense organs. In recent years, advances in molecular biology methods and genetic analysis have enabled clarification of the causes of diseases of the nervous system and sense organs - an area that has been slower to develop compared to other fields. As such, this is a field with rich potential for development.

(1) fundamental analysis of the normal functioning of the nervous system and sense organs and (2) causal analysis of disease groups arising from failure of the normal functioning of the nervous system and sense organs, with the aim of developing effective treatment methods.

At present, the analysis methodologies in these fields are wide-ranging, and through the gathering of researchers who are fluent in diverse methodologies, we are in a position to pursue research in an effective and interdisciplinary manner.
ii Topics
(a) Brain Function Analysis

The brain is the locus of our mind and the key area that supports human activity. Accordingly, while research in this area is of extreme importance, it also comes with difficulties unique to this field and that are due to complications in conducting such research. We work to overcome such challenges, conducting activities such as fundamental biological research and pathologic analysis of psychiatric disorders (in particular, schizophrenia), understanding the relationship between the number of neural stem cells and cerebral disorders through the use of optical imaging, gene therapy of cerebral tumors through the use of neural stem cells, cloning and analysis of elements that influence the differentiation of neural stem cells, and the morphological analysis of brain disease.

(b) Sensorimotor Control

The peculiar characteristics of the sense organs and motor system require a specialized research approach for each area. To conduct activities such as PDT for head and neck tumors (in particular, cancer of the laryngopharynx), elucidation of auditory disturbance mechanisms through the use of photosensitized reactions in the examination of inner ear disorders, basic research into peripheral nerve regeneration and cartilage regeneration, analysis of mouse osteoclast mechanisms using VEC-DIC microscopy, basic research for the application of photodynamic therapy for rheumatoid arthritis, and research into the development of emergency devices equipped with three-dimensional visual capabilities (life support robots in bio-hazardous environments).

(3) Frontier Medicine

i Overview of Research Field

Through repeated cycles of cell differentiation, organisms transform from one zygote to multicellular organisms and as all areas of the organism interact with one another, organs are formed. Tissue-specific stem cells exist in the tissue of all organs, and while maintaining such stem cells, a high number of differentiated cells peculiar to the organ are created, forming multicellular tissue. Further, every differentiated cell has its own life span, with old cells continuously making way for the new. Even so, as an organism ages, failures can be observed in organ homeostasis and cell order.

In this field, in addition to elucidating (at the molecular, cell, organ cultivation, and individual levels) the control mechanisms for the multiplication and differentiation of cells (which are the building blocks of life) and the formation mechanisms of cell communities of all organs that are composed of multiple types of cells, we also pursue the practical application of research results for the treatment of diseases in humans.

ii Topics
(a) Molecular Neoplasia

Cancer is a hereditary disease that presents in a wide variety of ways. Further, cancer displays characteristics that deviate from normal cell communities. On the other hand, susceptibility to cancer is dependent on the interrelation between hereditary and environmental factors. Precancerous lesions develop as a result of genome failures in the individual, which transform due to the instability acquired by the tumor genome, become invasive, cause the failure of the homeostasis of the individual, and finally, its death. At all stages of cell differentiation, tumors develop based on the unique background of the organ concerned. The elucidation, at all stages of tumor development, of what types of precancerous and cancerous tumors emerge when the mechanisms of normal cells fail. By utilizing the genetic susceptibility markers for cancer discovered in such research, we develop prevention methods and targeted treatments that destroy cancerous cells while leaving normal cells unaffected.

(b) Tissue Regeneration

Tissue is made up of stem cells with particular fates and tissue-specific cells formed by the multiplication and differentiation of such stem cells; all tissues within organisms are made up of unique cells that have a three-dimensional structure. We identify all tissue stem cells, and elucidate the factors involved in the
multiplication and differentiation of such cells. Further, we are conducting research into the development of methods to enable cell transplants of stem cells that have been removed and frozen back into the person they were taken from in the event of tissue loss due to disease. Furthermore, also conducting research aimed at addressing the various challenges, for example organ rejection, in the field of organ transplantation, which is currently receiving much attention.

(c) Organ Pathology

Organs differ in both their component cells and functions. We research organ function from the perspectives of biochemistry, physiology, and molecular biology. Due to the fact that the state of homeostasis failure in organs is an illness, we investigate the mechanisms through which homeostasis failure occurs and promising methods to prevent such failure from occurring. Simply put, we are engaged in research in pursuit of an understanding of disease onset mechanisms, accurate diagnostic methods, and medical treatments.

(4) Infectious Disease Control & Preventive Medicine

i Overview of Specialization

Biological defenses are systems for protecting the organism and maintaining homeostasis in the face of not only external threats but also abnormal events that may occur within the body. This system has developed in a complex manner in accordance with the principle of “the survival of the fittest.” Threats of the former type include infection, trauma, and burns. The latter includes neoplasia, and disturbances in blood flow, for example. This field works toward (1) not only defense mechanisms for the aforementioned, but also the elucidation of (2) their pathophysiology and, furthermore, (3) the conditions of diseases caused by failure of defense mechanisms, through the utilization of the methods of molecular biology, biochemistry, cell biology, and developmental engineering in the pursuit of the development of methods of diagnosis, treatment, and prevention. Furthermore, (4) research into primary prevention and tailor-made treatments based on individual genetic information, and (5) epidemiological research into risk factors for lifestyle related illnesses and preventive medicine research for health promotion in local communities are also being conducted.

ii Topics

(a) Infectious Disease and Immunology

The analysis of immune system and infection defense mechanisms against intracellular parasites (tubercle bacillus, Listeria monocytogenes, Legionella pneumophila, and chlamydia, etc.), the development of DNA vaccines to prevent infection from intracellular parasites based on such analysis, the development of rapid diagnosis methods for bacteria, and the development of new fast-acting sterilization methods.

With regard to viruses (HCV, HBV, etc.) that persistently infect the organism or host cell and, over the long term, cause, for example, inflammation, metabolic disorder, and oncogenesis, we are particularly interested in elucidating the interactions with host factors, virus life-cycles, and the molecular mechanisms of pathogenic expression. Additionally, we are involved in research into treatment strategies for viral infectious diseases.

Research into antimalarial agent screening and malaria treatment methods is being undertaken. Furthermore, the analysis of the pathophysiology, diagnosis, and treatment of autoimmune diseases, the mechanisms of autoimmune phenomena, and autoantigens, and the analysis of mechanisms of tissue/organ-specific immunological responses in the context of transplant immunity tolerance induction.

(b) Preventive Medicine

With a foundation in contributing objective evidence-based health care, various research programs relating to public health and epidemiology, as well as clinical laboratory medicine.

Study subjects include lifestyle related illnesses, the elderly, maternal and child health, mental health, suicide and accidents, and industrial health. One example project is a cohort study that investigates the effects of lifestyle and socioeconomic factors. The fields of health crisis management, health administration, medical hydrology, and regional medical systems.

Additionally, focusing on genes, proteins, cells, tissue, and internal organs, we work to elucidate pathological mechanisms, such as malignant tumors, lifestyle related diseases, and infectious diseases, and to
develop diagnostic and treatment methods for such. As the onset of illness can be thought of as related to a complex interrelation of genetic and environmental factors, we conduct research into the genetic, environmental, and epigenetic backgrounds of illness. Based on such research activities, we are also conducting research into the practical implementation of fundamental preventive medicine.

(c) Information for Crisis Management Medicine

The analysis of biological defense mechanisms in reaction to stress and the discovery of methods for the monitoring of such, suppression of biological reactions due to over-response, analysis of variations in defense mechanisms due to genetic polymorphism and the clinical application of such knowledge, setting of clinical guidelines based on EBM for acute phases of diseases, collection and analysis of regional data regarding emergency treatment of trauma, development of new educational tools that are adaptable to individual ability levels, development of new diagnostic tools to enable the analysis of diseases in the acute phase, and analysis of medical errors.

Conducting development projects, such as development of hypersensitive equipment for analyzing medicinal toxicants in human samples, in other words, the development of new methods for extracting all substances from human samples, analytical research based on mass spectrometry analysis of biomolecules, and development of high volume gas chromatography.

5 Course Registration

Please conduct your course registration having taken into account the course registration method and completion requirements in the subject listings and after adequate consultation with your supervisor. The fundamental selection structure is as follows, but please note that other structures are possible.

(1) Researcher Course
 i Register for “Advanced Foundations of Medical Science” (2 Units).
 ii Select 4 subjects (8 Units) marked with an asterisk (*) from the common subject or specialist subject list.
 iii Select “Seminar” subjects A and B (1 subject each).
 iv Register for “Practical Training.”

*It is recommended that you enroll for the seminars instructed by your supervisor and secondary supervisor.

(2) Clinical Researcher Course
 i Select 2 subjects (4 Units) from “Advanced Foundations of Medical Science” I, II, and III.
 ii Register for “Medical Ethics” and “Genetic Medicine and Regenerative Medicine” (4 Units).
 iii Select 1 subject from the common subject list.
 iv Select “Seminar” subjects A and B (1 subject each).
 v Register for “Practical Training.”

*It is recommended that you enroll for the seminars taught by your supervisor and assistant supervisor.
Major Research Areas

* When you email, please add “@hama-med.ac.jp” at the end of the professors’ email addresses (For example, “hamamatsu” should be replaced with “hamamatsu@hama-med.ac.jp”).

<table>
<thead>
<tr>
<th>field of study</th>
<th>Department</th>
<th>Name</th>
<th>E-mail</th>
<th>Main Research Content</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pharmacology</td>
<td>Kazuo UMEMURA</td>
<td>umemura</td>
<td>○ Investigation of mechanisms of thrombosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Investigation of development of cerebral infarction</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Investigation of mechanisms of arteriosclerosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Investigation of mechanisms of arteriosclerosis induced by transplantation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Pharmaco logical research using imaging techniques</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Translational research from basic research to clinical use</td>
</tr>
<tr>
<td></td>
<td>Diagnostic Radiology & Nuclear Medicine</td>
<td>(vacancy)</td>
<td></td>
<td>○ Hemodynamic analysis by MRI</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Imaging application of near-infrared spectroscopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Research on molecular imaging by CT, MRI, and PET</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Nuclear medicine approach to cancer diagnosis and therapy</td>
</tr>
<tr>
<td></td>
<td>Clinical Pharmacology & Therapeutics</td>
<td>(vacancy)</td>
<td></td>
<td>○ Pharmacogenomics and precision medicine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Clinical pharmacology in cardiovascular and respiratory medicine and medical oncology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Regulatory science for new drug development</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Intracellular signaling and functional regulation of vascular cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Clinical assessment of vascular functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Pulmonary arterial hypertension and new treatment development</td>
</tr>
<tr>
<td></td>
<td>Preeminent Medical Photonics Education & Research Center (Department of Molecular Imaging)</td>
<td>Yasuhiro MAGATA</td>
<td>ymagata</td>
<td>○ Multimodal molecular imaging studies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Development of novel PET/SPECT molecular imaging probes for patho-functional analysis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Development of novel fluorescence molecular imaging probes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Development of novel theranostic method using DDS system for cancer or inflammation lesion</td>
</tr>
<tr>
<td></td>
<td>Integrated Human Sciences (Chemistry)</td>
<td>Chuzo FUJIMOTO</td>
<td>fujimoto</td>
<td>○ Development of medical chips</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ High sensitive monitoring of environment-related substances</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Development of microscale solid phase extraction devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Bioassay based on capillary electrophoresis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Design of new stationary phases for HPLC</td>
</tr>
<tr>
<td></td>
<td>Hospital Pharmacy</td>
<td>Junichi KAWAKAMI</td>
<td>kawakami</td>
<td>○ Development of sensitive and fast analytical method of drugs in human biological specimens</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Pharmacokinetic analysis and its prediction in drug-drug interactions and adverse effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Clinical pharmacokinetics and pharmacology in infectious disease, cancer chemotherapy, and palliative care</td>
</tr>
<tr>
<td></td>
<td>Surgery 2 (Divisions of Gastroenterological & Vascular Surgery)</td>
<td>Hiroya TAKEUCHI</td>
<td>takeuchi</td>
<td>○ Cancer metastasis: mechanisms and novel therapy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Translational research regarding interaction between cancer cells and matrix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Navigation surgery utilizing three-dimensional imaging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Identification of mechanisms of bowel movement and development of novel drugs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Pathogenesis of hereditary bowel diseases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Aortic aneurysm: identification of pathogenesis and novel therapy development</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Lymphatic perfusion on physiological or pathological conditions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Thrombosis: clarification of the pathogenesis and development of the prevention</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Tissue oxygen metabolism: investigation of pathogenesis and development of novel evaluation methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Lipid metabolisms in cancer tissue</td>
</tr>
<tr>
<td></td>
<td>Dermatology</td>
<td>Yoshiki TOKURA</td>
<td>tokura</td>
<td>○ Investigation on atopic dermatitis and skin barrier system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Pathogenesis of alopecia areata and new therapies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Immunological mechanism of psoriasis and its treatments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Immunological monitoring of melanoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Pathogenesis of drug hypersensitivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Cellular biology of cutaneous lymphoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Mode of infection of HTLV-1 and dendritic cells</td>
</tr>
<tr>
<td></td>
<td>Ophthalmology</td>
<td>Yoshihiro Hotta</td>
<td>hotta</td>
<td>○ Molecular mechanisms of incurable ocular diseases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ The genetic diagnosis of incurable ocular diseases</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Clinical studies on therapies for retinitis pigmentosa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Physiological study on amblyopia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Eye movement study with imagings</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>○ Study of strabismus treatment</td>
</tr>
<tr>
<td>Department & Genomics</td>
<td>Department Name</td>
<td>E-mail</td>
<td>Name</td>
<td>Main Research Content</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Dentistry & Oral & Maxillofacial Surgery</td>
<td>Fuminori KATOU</td>
<td>katóu</td>
<td>Development of diagnosis and therapy of oral cancer using laser</td>
<td>Molecular biological research of oral cancer</td>
</tr>
<tr>
<td>Preeminent Medical Photonics Education & Research Center (Department of Photomedicine)</td>
<td>Shinsei MINOSHIMA</td>
<td>mimo</td>
<td>Search of glaucoma-causing genes and analysis of their pathogenic mechanism</td>
<td>Study of the onset mechanism of age-related macular degeneration (AMD) using an animal model for retinal photic injury which mimics the pathogenicity of AMD</td>
</tr>
<tr>
<td>Preeminent Medical Photonics Education & Research Center (Department of Photomedicine Genomics)</td>
<td></td>
<td></td>
<td>Functional analysis of OPTN, a causative gene for glaucoma and Amyotrophic Lateral Sclerosis</td>
<td>Search of genes responsible for genetic eye/ear diseases and analysis of mutation-phenotype relationship</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Construction of a database, MutationView, for the genetic variation and phenotype associated with human individual differences including hereditary diseases</td>
<td></td>
</tr>
<tr>
<td>Neurophysiology</td>
<td>Atsuo FUKUDA</td>
<td>axfukuda</td>
<td>Neuronal and brain development promoted by CT homeostasis-regulating genes</td>
<td>CT homeodynamics governing neural network functions</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Dysregulation of CT homeostasis underlying neurological, psychiatric and developmental disorders</td>
<td>Maternal stress, maternal undernutrition, genetically modified mice, GABA, taurine, astrocyte, neurogenesis, neuronal migration</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>brain slice, cell culture, patch-clamp, optical imaging, 2 photon microscopy, EEG analysis, behavioral tests, photo-uncaging</td>
<td>Analyses of the role of the molecules of the fibrinolytic system in inflammation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Functional and conformational analyses of the molecules of the fibrinolytic system</td>
<td></td>
</tr>
<tr>
<td>Medical Physiology</td>
<td>Tetsumei URANO</td>
<td>uranot</td>
<td>Real time imaging analyses of platelets activation, coagulation and fibrinolysis</td>
<td>Imaging analyses of the expression of the fibrinolytic activity on the vascular endothelial cells</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analyses of the role of the molecules of the fibrinolytic system in angio genesis</td>
<td>Investigations of physiological and structural vessel dynamics in living animals</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analyses of the role of the molecules of the fibrinolytic system in inflammation</td>
<td>Functional and conformational analyses of the molecules of the fibrinolytic system</td>
</tr>
<tr>
<td>Regenerative & Infectious Pathology</td>
<td>Toshihide IWASHITA</td>
<td>toshirwa</td>
<td>Pathology of organ fibrosis</td>
<td>Identification of mesenchymal stem cells and their application to medical treatment</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biological analysis of neural crest stem cells</td>
<td>Analysis of the infection mechanism into the nerve cells of the cytomegalovirus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relationship between cytomegalovirus and interstitial pneumonia</td>
<td>Analysis of multi-drug resistance in hematological malignancies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analysis of interferon-associated genes in Sjogren's syndrome</td>
<td>Study of remission maintenance therapy in rheumatoid arthritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study of malignancy development in autoimmune diseases</td>
<td></td>
</tr>
<tr>
<td>Internal Medicine 3 (Divisions of Cardiology, Hematology & Rheumatology)</td>
<td>Yuichiro MAEKAWA</td>
<td>ymaekawa</td>
<td>Mechanism and mitochondrial function of myocardial ischemia/reperfusion injury</td>
<td>The changes and the mechanism of contraction-relaxation coupling in failed myocardium</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hypertrophic cardiomyopathy: identification of pathogenesis and development of novel therapy</td>
<td>The molecular biological analysis of causal gene in leukemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The analysis of differentiation-inducing therapy and apoptosis in leukemia cells</td>
<td>The analysis of multi-drug resistance in hematological malignancies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analysis of interferon-associated genes in Sjogren's syndrome</td>
<td>Study of remission maintenance therapy in rheumatoid arthritis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study of malignancy development in autoimmune diseases</td>
<td></td>
</tr>
<tr>
<td>Preeminent Medical Photonics Education & Research Center (Department of Biofunctional Imaging)</td>
<td>Yasuomi OUCHI</td>
<td>ouchi</td>
<td>Brain research with PET, MRI and NIRS technologies</td>
<td>Functional and molecular imaging for brain disorders</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In vivo imaging of mind in humans</td>
<td>Development of new in vivo imaging devices and methods</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Translational research from animals to humans</td>
<td></td>
</tr>
<tr>
<td>Cellular & Molecular Anatomy</td>
<td>Mitsutoshi SETOU</td>
<td>setou</td>
<td>Challenge to rejuvenescence through understanding the life of multicelluler organisms</td>
<td>Development and application of light-based quantum imaging techniques including mass microscopy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Observation and manipulation of postgenome conditions such as posttranslational modifications, lipids, and metabolites</td>
<td></td>
</tr>
<tr>
<td>Preeminent Medical Photonics Education & Research Center (Department of Innovative Medical Photonics)</td>
<td></td>
<td></td>
<td>Development of the system for minimally invasive surgery</td>
<td>Application to the medicine of the advanced optics imaging</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Technological advances of microscopes and endoscopes</td>
<td>Basic researches of the ischemia-tolerance and translational researches to the clinical application</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Researches of the mechanisms for ischemic neuronal death and excitotoxicity</td>
<td>Basic researches of the photo-therapy for the cancer</td>
</tr>
<tr>
<td>Preeminent Medical Photonics Education & Research Center (Department of Biomedical Optics)</td>
<td>Yoko HOSHI</td>
<td>yhoshi</td>
<td>Development and application of diffuse optical tomography (optical CT)</td>
<td>Development of fluorescence tomography and molecular imaging of living subjects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Research on light propagation in biological tissue with numerical and experimental approaches</td>
<td>Research in brain function with NIRS, (MRI, and eye-tracking recording system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Neural mechanisms of human emotion generation and regulation</td>
<td>Research on oxygen dynamics in biological tissue with NIRS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Brain monitoring in neonates and infants with optical techniques</td>
<td></td>
</tr>
</tbody>
</table>
| Department of Organ & Tissue Anatomy | Kohji SATO | ksato | • Analysis of navigation system of nervous, vascular and lymphatic system during development
• Mechanisms of vascular diseases, atherosclerosis, aneurysm and lymphangiopathy, and their therapies.
• Analysis of neuronal homeostasis in adult brain
• Analysis of new neurosecretory factors on ischemic stroke
• The brain-gut connection - Analysis of the interdependence of the brain environment
• Development and modification of histological and morphological methods. Improvement for more effective educational methods in the anatomical science. |
| ----------------------------------- | ---------- | ------ | | Psychiatry | Hidenori YAMASUE | yamasue | • Multimodal neuroimaging studies to uncover the pathophysiology of psychiatric disorders including autistic social communicational deficits, eating disorder, mood disorder, and schizophrenia.
• Applications of objective and quantitative analyses of facial expression and voice production to assess psychiatric symptoms.
• Molecular neuroimaging studies to uncover neurobiological mechanisms of psychiatric symptoms.
• Development of neuroimaging indices and objective and quantitative behavioral indices to assess therapeutic effects on psychiatric symptoms.
• Independent clinical trials to develop novel treatments on currently untreatable psychiatric symptoms |
| Neurosurgery | Hiroki NAMBA | hnamba | • Pathophysiology and treatment of brain tumors
• Molecular biology of brain tumors
• Cerebral blood flow and metabolism
• Functional neurosurgery
• Basic and clinical research on cerebrovascular disorders
• Gene therapy of brain tumors
• Regenerative medicine of the brain
• Rupture prevention of cerebral aneurysms |
| Research Center for Child Mental Development | Noriyoshi TAKEI | takei | • Identification of risk factors for distorted mental health in children
• Studies of causality in relation to mental health with use of advanced statistical modelling techniques
• Early life predictors for mental disorders in children/adults
• Clarification of pathophysiological mechanisms for neurodevelopmental disorders using neuroimaging approaches
• Neuroimaging studies of individuals with social withdrawal
• Epidemiological investigation into health disturbances in children (pupils, students) at school settings |
| Orthopedic Surgery | Yukihiro MATSUYAMA | spine-yu | • Spinal cord regeneration estimated by molecular biology
• Revolution of intraoperative spinal cord monitoring
• Basic and clinical research for limb lengthening
• Basic and clinical research for osteoporosis
• Basic and clinical research for regeneration of cartilage
• Basic and clinical research for rheumatoid arthritis |
| Otorhinolaryngology/ Head & Neck Surgery | Hiroyuki MINETA | mineta | • Pathological analysis of the cochlea(Electronic microscope,Immunoelectronic microscope)
• Basic analysis of inner ear circulation and hearing loss
• Mass spectrometry of head and neck tumor
• Genetic analysis of head and neck carcinogenesis
• The speech recognition of hearing aid and cochlear implant |
| Anesthesiology & Critical Care Medicine | Yoshiki NAKAJIMA | nakayos | • Studies for cerebral aneurysm(mechanism&prevention)
• Pharmacokinetic of anesthetic drugs during cardiovascular surgery
• Studies for ischemia/reperfusion injury
• Studies for cardio pulmonary resuscitation
• Clinical studies for painless labor
• Microcirculation during septic shock |
<table>
<thead>
<tr>
<th>Field of Study</th>
<th>Department</th>
<th>Name</th>
<th>E-mail</th>
<th>Main Research Content</th>
</tr>
</thead>
</table>
| Frontier | Molecular Biology | Masatoshi KITAGAWA | kitama| ○ Molecular basis of cell fate determination via cell cycle regulation
 | | | saita | ○ Molecular mechanisms of ubiquitin-mediated proteolysis
 | | | | ○ DNA replication and checkpoint as DNA damage responses
 | | | | ○ Molecular mechanisms of X-chromosome inactivation
 | | | | ○ Molecular mechanisms of inflammation and tissue fibrosis
 | | | | ○ Regulation of gene expression by non-coding RNAs and conformational changes of chromatin
 | | | | ○ Molecular mechanisms of tumorigenesis, cell differentiation and senescence via cancer-related genes
 | | | | ○ Molecular basis of hepatocarcinogenesis via HBV |
| Medicine | Tumor Pathology | Haruhiko SUGIMURA | sugimur | ○ Gene, environment, and phenotype correlation of human solid tumors
 | | | | ○ Genetic susceptibility and adductomics analysis of gastrointestinal and respiratory cancer
 | | | | ○ Genomic and chromosomal instability of human tumor and associated genes
 | | | | ○ Oncotargets in terms of molecular pathology of human tumors |
| | Radiation Oncology | Katsunasa NAKAMURA | naka | ○ Analysis of treatment outcome of radiation therapy
 | | | | ○ Development of treatment method of precise radiation therapy
 | | | | ○ Patterns of care study for radiation therapy
 | | | | ○ Study of adverse effects after radiation therapy |
| | Clinical Oncology | Yasuhide YAMADA | yamada | ○ Chemotherapy and chemoradiotherapy
 | | | | ○ Reverse translational research, predictive and prognostic markers
 | | | | ○ Pharmacogenomics
 | | | | ○ Clinical trial
 | | | | ○ Palliative care |
| | Biochemistry | Hirotomo SAITSU | saitsu | ○ Genetic analysis of neurodevelopmental disorders by next generation sequencing
 | | | | ○ Generation of cell and mouse model mimicking human mutations
 | | | | ○ Elucidating pathomechanisms of human disorders
 | | | | ○ Identification of somatic mutations involved in human disorders
<pre><code> | | | | ○ Investigating mechanisms of cell death regulation by Patched1 |
</code></pre>
<table>
<thead>
<tr>
<th>Field of study</th>
<th>Department</th>
<th>Name</th>
<th>E-mail</th>
<th>Main Research Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pediatrics</td>
<td>Tsutomu OGATA</td>
<td>tomogata</td>
<td></td>
<td>○ Molecular studies in disorders of sex development, maturation defects, growth failure, and congenital malformation syndrome. ○ Epigenetic mechanisms leading to the development of human imprinting disorders ○ Genomic epidemiology on the influences of environmental chemicals on child health ○ Therapeutic intervention studies in neonates ○ Mechanisms on fetal and placental growth and development ○ Risk of genetic perturbations in assisted reproductive technology ○ Biophisiology of childhood circulation ○ Electrolyte metabolites and water balance in pediatric nephrology ○ Clinical studies in pediatric neurology ○ Genomic and epigenomic studies in pediatric cancers ○ Proactive studies on genomic and epigenomic factors in pediatric allergy ○ Physiological and pharmacological properties in childhood solid tumors ○ Changes in physiological, hormonal, and immunological status after bone marrow transplantation</td>
</tr>
<tr>
<td>Integrated Human Sciences (Biology)</td>
<td>Tatsuya MAEDA</td>
<td>tmaeda</td>
<td></td>
<td>○ Mechanisms of TORC1/mTORC1 regulation ○ Physiological functions of TORC1/mTORC1 ○ Sensing mechanisms of intracellular amino acids</td>
</tr>
<tr>
<td>Internal Medicine</td>
<td>Hiroaki MIYAJIMA</td>
<td>miyajima</td>
<td></td>
<td>○ Pathophysiology of acute kidney injury ○ Pathophysiology of disorders of intrarenal renin-angiotensin systems ○ The development of understanding and treatment of pathogenic mechanism of neurodegenerative diseases ○ Genomic analysis of neurologic metabolic disorders ○ Gastrointestinal disease and Helicobacter pylori infection ○ Mucosal immunology and inflammatory bowel disease ○ The development of early diagnostic methods and multidisciplinary therapy in gastrointestinal cancer</td>
</tr>
<tr>
<td>Internal Medicine 2 (Divisions of Endocrinology, Metabolism, Respiratology & Hepatology)</td>
<td>Takafumi SUDA</td>
<td>suda</td>
<td></td>
<td>○ Functional analyses of nuclear hormone receptors ○ Etiologies of resistance to thyroid hormone ○ Signal transduction mechanism of hypothalamic and pituitary hormones ○ Mechanisms of insulin resistance ○ The local immune response in the lung ○ Research for lung dendritic cells ○ The mechanisms for hepatic injury and fibrogenesis</td>
</tr>
<tr>
<td>Urology</td>
<td>Hideaki MIYAKE</td>
<td>hmiyake</td>
<td></td>
<td>○ Basic and clinical studies on urological cancers ○ Assessment of the biomarkers for early detection and development of the novel therapy in renal cell carcinoma ○ Clinical study of mechanism regulating the rejection and acquisition of immune tolerance after renal transplantation ○ Basic and clinical studies on the mechanism regulating the occurrence of urinary calculi ○ Basic and clinical studies on lower urinary tract dysfunction</td>
</tr>
<tr>
<td>Department</td>
<td>Name</td>
<td>E-mail</td>
<td>Main Research Content</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--------------------</td>
<td>--------</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>
| Bacteriology & Immunology | Toshinobu HORII | horii | ○ Study on bacterial or fungal pathogenicity and drug resistance
 | | | ○ Study on diagnosis and therapy for infectious diseases
 | | | ○ Development of vaccine for bacterial infectious diseases
 | | | ○ Study on infection control and prevention |
| Virology & Parasitology | Tetsuro SUZUKI | tesuzuki | ○ Mechanisms of viral genome replication
 | | | ○ Mechanisms of viral particle formation
 | | | ○ Mechanisms of viral oncogenesis
 | | | ○ Mechanisms of metabolic disorders caused by viral infection
 | | | ○ Development of animal models of viral diseases and their application
 | | | ○ Pathogenesis of parasitic infectious diseases
 | | | ○ Development of anti-malaria drugs |
| Laboratory Medicine | Masato MAEKAWA | mmaekawa | ○ Technology development of genetic analysis
 | | | ○ Laboratory diagnosis for pathophysiology
 | | | ○ Serum enzyme abnormalities
 | | | ○ Molecular diagnosis for cancer
 | | | ○ Etiological and case study for hospital infection
 | | | ○ Primary care genetics
 | | | ○ Laboratory diagnosis for infection
 | | | ○ Mechanism of action of thyroid hormone
 | | | ○ Translational research for endocrine metabolic diseases
 | | | ○ Biomarker for chronic respiratory disorders
 | | | ○ Regulation of allergen specific antibody production
 | | | ○ Immune response of pulmonary myositis |
| Community Health & Preventive Medicine | Toshiyuki OJIMA | ojima | ○ Cohort studies on noncommunicable diseases (NCDs) and disability prevention
 | | | ○ Studies on social determinants of health and social capital
 | | | ○ Studies on health emergency management and disaster health
 | | | ○ Studies on maternal and child health
 | | | ○ Studies on public health administration and medical system
 | | | ○ Studies on nutrition and diet
 | | | ○ Studies on occupational health
 | | | ○ Studies on infectious diseases prevention and control
 | | | ○ Studies on spatial epidemiology
 | | | ○ Other epidemiological and public health studies |
| Legal Medicine | Kanako WATANABE | kanako | ○ Research of sensitive analytical procedures for toxic compounds and drugs by man spectrometry.
 | | | ○ Developing of post column switching large volume injection for GC-MS.
 | | | ○ Investigation of relationship between cyanide compounds in Sugihiratake (Pleurocystella portigens) and acute encephalitis.
 | | | ○ Simultaneous sensitive screening of toxic compounds and medicines by MALDI-TOF-MS.
 | | | ○ Developing sensitive analytical procedures especially for quantitation of cathinones and synthetic cannabinoids in human specimens by LC-MS-MS, GC-MS. |
| Emergency & Disaster Medicine | Ansato YOSHINO | yoshino | ○ New device for the measurement of tissue oxygen saturation
 | | | ○ Use of the end-tidal carbon dioxide concentration measurement for the treatment
 | | | ○ Research of emergency and disaster medicine using drone and artificial intelligence
 | | | ○ Development of new cardiopulmonary resuscitation
 | | | ○ Disaster medical care education for citizens |
| Medical Informatics | Michio KIMURA | kimura | ○ Medical Imaging and Radiological Systems
 | | | ○ Standardization of Medical Informatics
 | | | ○ Medical Object-oriented Technology
 | | | ○ Electronic Health Records
 | | | ○ Medical Knowledge Representation |
APPLICATION FEE PAYMENT INSTRUCTIONS (Payment from Abroad)

If you want to transfer the examination fee from abroad, please refer to the following. Please enclose the certificate kinds concerned with examination fee payment (It's possible to copy.) with an application documents.

You will pay ¥ 30,000. Payment should be made in Japanese yen only, and the transfer fee required by the overseas financial institution should be paid individually. A remittance check is not acceptable.

* It should be noted that the examination fee alone (without the handling and transfer fees) does not cover the necessary amount for you to take the examination.

<table>
<thead>
<tr>
<th>Bank name, SWIFT code, Branch name and Branch address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bank Name: SUMITOMO MITSUI BANKING CORPORATION</td>
</tr>
<tr>
<td>Swift Code: SMBCJPJT</td>
</tr>
<tr>
<td>Branch Name: Hamamatsu</td>
</tr>
<tr>
<td>Branch Address: 325-6 Sunayama-cho, Naka-ku, Hamamatsu, 430-0926, Japan</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name of Payee: National University Corp, Hamamatsu University School of Medicine Kenteiryouguti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account Number: 6941602</td>
</tr>
<tr>
<td>Account Type: Saving</td>
</tr>
<tr>
<td>Address of Payee 1-20-1 Handayama, Higashi-ku, Hamamatsu, 431-3192, Japan</td>
</tr>
<tr>
<td>Phone of Payee +81-53-435-2205</td>
</tr>
</tbody>
</table>

In addition, fill out the following information if necessary.

<table>
<thead>
<tr>
<th>Purpose of Remittance: Application Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Message to Payee, if any: Your name</td>
</tr>
</tbody>
</table>

18